Package: fastNaiveBayes 2.2.1

Martin Skogholt

fastNaiveBayes: Extremely Fast Implementation of a Naive Bayes Classifier

This is an extremely fast implementation of a Naive Bayes classifier. This package is currently the only package that supports a Bernoulli distribution, a Multinomial distribution, and a Gaussian distribution, making it suitable for both binary features, frequency counts, and numerical features. Another feature is the support of a mix of different event models. Only numerical variables are allowed, however, categorical variables can be transformed into dummies and used with the Bernoulli distribution. The implementation is largely based on the paper "A comparison of event models for Naive Bayes anti-spam e-mail filtering" written by K.M. Schneider (2003) <doi:10.3115/1067807.1067848>. Any issues can be submitted to: <https://github.com/mskogholt/fastNaiveBayes/issues>.

Authors:Martin Skogholt

fastNaiveBayes_2.2.1.tar.gz
fastNaiveBayes_2.2.1.zip(r-4.5)fastNaiveBayes_2.2.1.zip(r-4.4)fastNaiveBayes_2.2.1.zip(r-4.3)
fastNaiveBayes_2.2.1.tgz(r-4.4-any)fastNaiveBayes_2.2.1.tgz(r-4.3-any)
fastNaiveBayes_2.2.1.tar.gz(r-4.5-noble)fastNaiveBayes_2.2.1.tar.gz(r-4.4-noble)
fastNaiveBayes_2.2.1.tgz(r-4.4-emscripten)fastNaiveBayes_2.2.1.tgz(r-4.3-emscripten)
fastNaiveBayes.pdf |fastNaiveBayes.html
fastNaiveBayes/json (API)
NEWS

# Install 'fastNaiveBayes' in R:
install.packages('fastNaiveBayes', repos = c('https://mskogholt.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mskogholt/fastnaivebayes/issues

Datasets:
  • tweets - This data originally came from Crowdflower's Data for Everyone library.
  • tweetsDTM - This data originally came from Crowdflower's Data for Everyone library.

On CRAN:

5.96 score 42 stars 43 scripts 323 downloads 1 mentions 10 exports 2 dependencies

Last updated 5 years agofrom:cfd4c8f092. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winOKNov 21 2024
R-4.5-linuxOKNov 21 2024
R-4.4-winOKNov 21 2024
R-4.4-macOKNov 21 2024
R-4.3-winOKNov 21 2024
R-4.3-macOKNov 21 2024

Exports:fastNaiveBayesfnb.bernoullifnb.detect_distributionfnb.gaussianfnb.loadfnb.multinomialfnb.poissonfnb.savefnb.trainfnb.update

Dependencies:latticeMatrix

Fast Naive Bayes

Rendered fromfastnaivebayes.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2019-04-16
Started: 2018-12-24

Readme and manuals

Help Manual

Help pageTopics
Fast Naive Bayes Classifier for different DistributionsfastNaiveBayes fastNaiveBayes.default fnb.bernoulli fnb.bernoulli.default fnb.gaussian fnb.gaussian.default fnb.multinomial fnb.multinomial.default fnb.poisson fnb.poisson.default fnb.train fnb.train.default
Distribution Detection Functionfnb.detect_distribution fnb.detect_distribution.default
Save & Load Function for Fast Naive Bayes Modelsfnb.load fnb.load.default fnb.save fnb.save.default
Update functionfnb.update fnb.update.default fnb.update.fastNaiveBayes fnb.update.fnb.bernoulli fnb.update.fnb.gaussian fnb.update.fnb.multinomial fnb.update.fnb.poisson
Predict Method for fastNaiveBayes fitspredict.fastNaiveBayes predict.fnb.bernoulli predict.fnb.gaussian predict.fnb.multinomial predict.fnb.poisson
This data originally came from Crowdflower's Data for Everyone library.tweets
This data originally came from Crowdflower's Data for Everyone library.tweetsDTM